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Domains and synchronization in high-dimensional cellular automata
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Difference patterns are studied in high-dimensional totalistic cellular automata. The results limit the possible
mechanisms for the global (quasi)periodic behavior observed in some of these models.
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A few years ago a generic argument was given against the
existence of collective behavior with period larger than 2 in
extended systems with local interactions [1]. Several excep-
tions to this argument have recently been found [2] in cellu-
lar automata (CA) models in which the average magnetiza-
tion exhibits period 3 or near 3, with superimposed
deterministic noise. Examples are now known in as few as
three dimensions [3] and as many as six, as well as in
coupled map lattice models [2].

Several attempts [2,4—6] have been made to understand
the phenomenology of these models, for example in terms of
second-order discrete dynamics [5], or of difference equa-
tions involving site-site correlations [6]; further studies [7,8]
have addressed the possible mechanisms by which this puz-
zling collective behavior emerges. In this paper we examine
the recent proposal [8,9] that the global periodicity may be a
manifestation of local cyclic subsystems which do not inter-
act [10]. Specifically, we look at difference patterns between
almost identical configurations in both the three-dimensional
Hemmingsson model [3], which has a collective period close
to 3, and one of the original Chaté-Manneville models [2]
which exhibits magnetization with period 3 plus noise. The
patterns, which take on value 1 if the states of sites at the
same position but in different configurations are different at a
given time step, show clearly that a single spin flip can affect
the values of spins anywhere in the system rapidly and uni-
formly, contrary to what a system made of noninteracting
subsystems would do [11].

The first model considered in this work is the three-
dimensional CA found by Hemmingsson [3]; each site (spin)
of the automaton can take value O or 1; at each time step
every site is updated to be 1 if the sum of the site and its six
nearest neighbors is exactly 0 or 5, and to be O otherwise.
One hundred systems of size 81° were simulated with peri-
odic boundary conditions. Difference patterns were observed
along the three principal lattice directions and along the four
main diagonals. In all cases the changes caused by a flip of
the central spin are carried with roughly constant speed [12],
with value of 0.485% 0.02 along the principal directions. The
maximum possible speed for spin change in this model
would be 1 because of the nearest-neighbor interaction. A
typical plot of the difference pattern along a particular row is
shown in Fig. 1. Time runs vertically from the top, and space
horizontally. Note that, unlike in one-dimensional CA, the
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pattern can be empty at some time steps; if that is the case,
differences can still be present in adjacent rows or columns.
The patterns are reminiscent of CA models belonging to
Wolfram’s class III [13].

A four-dimensional model in which sites are updated to be
1 if the sum of the nine-site von Neumann neighborhood is
between 3 and 8 was also studied. Systems of size 31X 20?
were considered, but only if the asymptotic period 3 was
found. Difference patterns were only monitored along the
dimension of size 31. The results are similar to those for the
Hemmingsson model. We note that plots similar to Fig. 1
were obtained both for randomly generated configurations

FIG. 1. Difference pattern along a principal direction in the
Hemmingsson model [3]. Horizontal axis: space; vertical axis: time,
running from the top. Dark pixels indicate that spins in two initially
almost identical configurations have different values. System size is
813. Speed of information transmission is about 0.485. Difference
patterns grow uniformly in every direction, indicating that no do-
main walls are present.
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and for states reached after a suitable transient time had
elapsed (typically 5000 time steps).

The simulations in this paper show beyond doubt that the
instances of (quasi)periodic collective behavior observed in
cellular automata of dimensions 3 or greater are not caused
by independent cyclic subsystems, but rather by global syn-
chronization. If the former were the case, the difference pat-
tern between nearly identical configurations would be con-
strained in at least one direction, contrary to what we
observe. The conclusion is that the results in [8] are not
relevant to understanding the mechanisms governing the
high-dimensional models in [2—4]. For example, in the one-
dimensional rule 73 studied in [8] the spin sequence (0110)
is impervious to spin values to its left or right, and therefore
confines the propagation of spin flips. This is confirmed, for
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example, by damage spreading simulations reported in [14],
and is contrary to the observations of the present paper. Con-
versely, the damage spreading results presented here pre-
clude the existence of domain walls (and hence of isolated
subsystems) such as the ones found in the one- and two-
dimensional models studied in [8].
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